Multi-Objective Optimization of Multi-Agent Elevator Group Control System Based on Real-Time Particle Swarm Optimization Algorithm

نویسنده

  • Yanwu Gu
چکیده

In order to get a globally optimized solution for the Elevator Group Control System (EGCS) scheduling problem, an algorithm with an overall optimization function is needed. In this study, Real-time Particle Swarm Optimization (RPSO) is proposed to find an optimal solution to the EGCS scheduling problem. Different traffic patterns and controller mechanisms for EGCS are analyzed. This study focuses on up-peak traffic because of its critical importance to modern office buildings. Simulation results show that EGCS based on Multi-Agent Systems (MAS) using RPSO gives good results for up-peak EGCS scheduling problem. Besides, the elevator real-time scheduling and re-allocation functions are realized based on RPSO in case new information is available or the elevator becomes busy because it is unavailable or full. This study contributes a new scheduling algorithm for EGCS, and expands the application of PSO.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pareto Optimal Design Of Decoupled Sliding Mode Control Based On A New Multi-Objective Particle Swarm Optimization Algorithm

One of the most important applications of multi-objective optimization is adjusting parameters ofpractical engineering problems in order to produce a more desirable outcome. In this paper, the decoupled sliding mode control technique (DSMC) is employed to stabilize an inverted pendulum which is a classic example of inherently unstable systems. Furthermore, a new Multi-Objective Particle Swarm O...

متن کامل

Load Frequency Control in Power Systems Using Improved Particle Swarm Optimization Algorithm

The purpose of load frequency control is to reduce transient oscillation frequencies than its nominal valueand achieve zero steady-state error for it.A common technique used in real applications is to use theproportional integral controller (PI). But this controller has a longer settling time and a lot of Extramutation in output response of system so it required that the parameters be adjusted ...

متن کامل

Modeling and Hybrid Pareto Optimization of Cyclone Separators Using Group Method of Data Handling (GMDH) and Particle Swarm Optimization (PSO)

In present study, a three-step multi-objective optimization algorithm of cyclone separators is catered for the design objectives. First, the pressure drop (Dp) and collection efficiency (h) in a set of cyclone separators are numerically evaluated. Secondly, two meta models based on the evolved Group Method of Data Handling (GMDH) type neural networks are regarded to model the Dp and h as the re...

متن کامل

An Interactive Fuzzy Satisfying Method Based on Particle Swarm Optimization for Multi-Objective Function in Reactive Power Market

Reactive power plays an important role in supporting real power transmission, maintaining system voltages within proper limits and overall system reliability. In this paper, the production cost of reactive power, cost of the system transmission loss, investment cost of capacitor banks and absolute value of total voltage deviation (TVD) are included into the objective function of the power flow ...

متن کامل

Pareto design of fuzzy tracking control based on the particle swarm optimization algorithm for a walking robot in the lateral plane on slope

Many researchers have controlled and analyzed biped robots that walk in the sagittal plane. Nevertheless, walking robots require the capability to walk merely laterally, when they are faced with the obstacles such as a wall. In walking robot field, both nonlinearity of the dynamic equations and also having a tracking system cause an effective control has to be utilized to address these problems...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013